Piecewise linear finite element methods are not localized
نویسندگان
چکیده
منابع مشابه
Piecewise linear finite element methods are not localized
Recent results of Schatz show that standard Galerkin finite element methods employing piecewise polynomial elements of degree two and higher to approximate solutions to elliptic boundary value problems are localized in the sense that the global dependence of pointwise errors is of higher order than the overall order of the error. These results do not indicate that such localization occurs when ...
متن کاملSome Optimal Error Estimates for Piecewise Linear Finite Element Approximations
It is shown that the Ritz projection onto spaces of piecewise linear finite elements is bounded in the Sobolev space, Wp\ for 2 <p < oo. This implies that for functions in W¿ n Wp the error in approximation behaves like 0(h) in Wx, for 2 <p =c oo, and like 0(h2) in Lp, for 2 *íp < oo. In all these cases the additional logarithmic factor previously included in error estimates for linear finite e...
متن کاملPiecewise Bilinear Preconditioning on High-order Finite Element Methods
The bounds of eigenvalues which are independent of both degrees of high-order elements and mesh sizes are shown for the preconditioned system by bilinear elements for the highorder finite elements discretizations applied to a model uniformly elliptic operator.
متن کاملPiecewise Bilinear Preconditioning of High-order Finite Element Methods
PIECEWISE BILINEAR PRECONDITIONING OF HIGH-ORDER FINITE ELEMENT METHODS SANG DONG KIM Abstract. Bounds on eigenvalues which are independent of both degrees of high-order elements and mesh sizes are shown for the system preconditioned by bilinear elements for high-order finite element discretizations applied to a model uniformly elliptic operator.
متن کاملFinite Element Methods for Linear Elasticity
Conditions for Stable Approximation Schemes Basic idea: Mimic structure of continuous problem. To establish stability of continuous problem, only used last two spaces in top sequence and last three spaces in bottom sequence. Λn−1(K) dn−1 −−−→ Λn(K)→ 0 ↗ Sn−2 ↗ Sn−1 Λn−2(V) dn−2 −−−→ Λn−1(V) dn−1 −−−→ Λn(V)→ 0. Thus, look for five finite dimensional spaces connected by a similar structure, i.e.,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2003
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-03-01584-9